Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; : e2300911, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629315

RESUMO

SCOPE: Arginine kinase (AK) is an important enzyme for energy metabolism of invertebrate cells by participating in the maintenance of constant levels of ATP. However, AK is also recognized as a major allergen in insects and crustaceans capable of cross-reactivity with sera of patients sensitized to orthologous proteins. In the perspective of introducing insects or their derivatives in the human diet in Western world, it is of primary importance to evaluate possible risks for allergic consumers. METHODS AND RESULTS: This work reports the identification and characterization of AK from Hermetia illucens commonly known as the black soldier fly, a promising insect for human consumption. To evaluate allergenicity of AK from H. illucens, putative linear and conformational epitopes are identified by bioinformatics analyses, and Dot-Blot assays are carried out by using sera of patients allergic to shrimp or mites to validate the cross-reactivity. Gastrointestinal digestion reduces significantly the linear epitopes resulting in lower allergenicity, while the secondary structure is altered at increasing temperatures supporting the possible loss or reduction of conformational epitopes. CONCLUSION: The results indicate that the possible allergenicity of AK should be taken in consideration when dealing with novel foods containing H. illucens or its derivatives.

2.
ACS Omega ; 9(15): 17655-17666, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645364

RESUMO

The nephrotoxic mycotoxin ochratoxin A (OTA) is a common food contaminant. OTA binds to the Sudlow's Site I region of serum albumin with very high affinity, resulting in its slow elimination. The displacement of OTA from albumin may be beneficial due to the faster excretion of the mycotoxin, while it may also lead to the increased tissue uptake of OTA. Furthermore, it is challenging to displace the mycotoxin from albumin even with high-affinity Site I ligands. In this study, we tested the impacts of Site I and Heme site ligands on OTA-albumin interactions by applying fluorescence spectroscopic, ultracentrifugation, and modeling studies. Chrysin-7-sulfate (C7S) strongly displaced OTA from both human and rat albumins; therefore, the impacts of C7S (single intravenous administration) and the parent flavonoid chrysin (repeated peroral treatment) were examined on the plasma and kidney levels of OTA in rats. Chrysin barely influenced the concentrations of mycotoxin in plasma and kidneys. In the first few hours, C7S significantly decreased the plasma levels of OTA compared to the control animals; while after 24 h, only minor differences were noticed. Our study highlights the superior displacing ability of C7S vs OTA regarding human and rat albumins.

3.
Curr Res Food Sci ; 8: 100710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496766

RESUMO

Free fatty acids receptors, with members among G protein-coupled receptors (GPCRs), are crucial for biological signaling, including the perception of the so called "fatty taste". In recent years, GPR120, a protein belonging to the GPCR family, drew attention as an interesting pharmacological target to cope with obesity, satiety and diabetes. Apart from long chain fatty acids, which are GPR120 natural agonists, other synthetic molecules were identified as agonists expanding the chemical space of GPR120's ligands. In this scenario, we unveiled peptides as possible GPR120 binders toward a better understanding of this multifaceted and relevant target. This study analyzed a virtual library collecting 531 441 low-polar hexapeptides, providing mechanistic insights on the GPR120 activation and further extending the possible chemical space of GPR120 agonists. The computational pipeline started with a narrow filtering of hexapeptides based on their chemical similarity with known GPR120 agonists. The best hits were tested through docking studies, molecular dynamics and umbrella sampling simulations, which pointed to G[I,L]FGGG as a promising GPR120 agonist sequence. The presence of both peptides in food-related proteins was thoroughly assessed, revealing they may occur in mushrooms, food-grade bacteria and rice. Simulations on the counterparts with D-amino acids were also performed. Umbrella sampling simulations described that GdIFGGG may have a better interaction compared to its all-L counterpart (-13 kCal/mol ΔG and -6 kCal/mol ΔG, respectively). Overall, we obtained a predictive model to better understand the underpinning mechanism of GPR120-hexapeptides interaction, hierarchizing novel potential agonist peptides for further analysis and describing promising food sources worth of further dedicated investigations.

4.
Ecotoxicol Environ Saf ; 273: 116167, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447519

RESUMO

Mycotoxins are known environmental pollutants that may contaminate food and feed chains. Some mycotoxins are regulated in many countries to limit the trading of contaminated and harmful commodities. However, the so-called emerging mycotoxins are poorly understood and need to be investigated further. Fusaric acid is an emerging mycotoxin, noxious to plants and animals, but is known to be less toxic to plants when hydroxylated. The detoxification routes effective in animals have not been elucidated yet. In this context, this study integrated in silico and in vitro techniques to discover potential bioremediation routes to turn fusaric acid to its less toxic metabolites. The toxicodynamics of these forms in humans have also been addressed. An in silico screening process, followed by molecular docking and dynamics studies, identified CYP199A4 from the bacterium Rhodopseudomonas palustris HaA2 as a potential fusaric acid biotransforming enzyme. Its activity was confirmed in vitro. However, the effect of hydroxylation seemed to have a limited impact on the modelled toxicodynamics against human targets. This study represents a starting point to develop a hybrid in silico/in vitro pipeline to find bioremediation agents for other food, feed and environmental contaminants.


Assuntos
Ácido Fusárico , Micotoxinas , Animais , Humanos , Ácido Fusárico/toxicidade , Simulação de Acoplamento Molecular , Micotoxinas/toxicidade , Ração Animal/análise , Sistema Enzimático do Citocromo P-450
5.
Toxicology ; 503: 153765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432407

RESUMO

Ochratoxin A (OTA) is a mycotoxin spread worldwide contaminating several food and feed commodities and rising concerns for humans and animals. OTA toxicity has been thoroughly assessed over the last 60 years revealing a variety of adverse effects, including nephrotoxicity, hepatotoxicity and possible carcinogenicity. However, the underpinning mechanisms of action have yet to be completely displayed and understood. In this framework, we applied a virtual pipeline based on molecular docking, dynamics and umbrella simulations to display new OTA potential targets. The results collected consistently identified OGFOD1, a key player in protein translation, as possibly inhibited by OTA and its 2'R diastereomer. This is consistent with the current knowledge of OTA's molecular toxicology and may fill some gaps from a mechanistic standpoint. This could pave the way for further dedicated analysis focusing their attention on the OTA-OGFOD1 interaction, expanding the current understanding of OTA toxicity at a molecular level.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Animais , Simulação de Acoplamento Molecular , Ocratoxinas/toxicidade , Contaminação de Alimentos , Proteínas de Transporte , Proteínas Nucleares/metabolismo
6.
Toxicology ; 501: 153686, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036094

RESUMO

Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi contaminating cereals and in grain-based products threatening human and animal health due to its endocrine disrupting effects. Germane to the mechanisms of action, ZEN may activate the estrogen receptors and inhibit the estrogens-producing enzyme aromatase (CYP19A1). Both show single nucleotide variants (SNVs) among humans associated with a diverse susceptibility of being activated or inhibited. These variations might modify the endocrine disrupting action of ZEN, requiring dedicated studies to improve its toxicological understanding. This work focused on human aromatase investigating via 3D molecular modelling whether some of the SNVs reported so far (n = 434) may affect the inhibitory potential of ZEN. It has been also calculated the inhibition capability of α-zearalenol, the most prominent and estrogenically potent phase I metabolite of ZEN, toward those aromatase variants with an expected diverse sensitivity of being inhibited by ZEN. The study: i) described SNVs likely associated with a different susceptibility to ZEN and α-zearalenol inhibition - like T310S that is likely more susceptible to inhibition, or D309G and S478F that are possibly inactive variants; ii) proofed the possible existence of inter-individual susceptibility to ZEN; iii) prioritized aromatase variants for future investigations toward a better comprehension of ZEN xenoestrogenicity at an individual level.


Assuntos
Zearalenona , Zeranol , Animais , Humanos , Zearalenona/toxicidade , Aromatase/genética , Zeranol/metabolismo , Zeranol/farmacologia , Força da Mão
7.
Food Res Int ; 173(Pt 1): 113284, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803597

RESUMO

The bitter taste perception evolved in human and animals to rapidly perceive and avoid potential toxic compounds. This is mediated by taste receptors type 2 (TAS2R), expressed in various tissues, which recently proved to be involved in roles beyond the bitter perception itself. With this study, the interaction between food-related toxic compounds and TAS2R46 has been investigated via computational approaches, starting with a virtual screening and moving to molecular docking and dynamics simulations. The virtual screening analysis identified trichothecolone and the trichothecenes class it belongs to, which includes mycotoxins widespread in several commodities raising food safety concerns, as possible TAS2R46 binders. Molecular docking and dynamics simulations were performed to further explore the trichotecenes-TAS2R46 interaction. The results indicated that deoxynivalenol and its 15-acetylated derivative could activate TAS2R46. Eventually, this study provided initial evidence supporting the involvement of TAS2R46 in the underpinning mechanisms of deoxynivalenol action highlighting the need of digging into the involvement of TAS2R46 and TAS2Rs in the adverse effects of deoxynivalenol and congeners.


Assuntos
Paladar , Tricotecenos , Animais , Humanos , Receptores Acoplados a Proteínas G , Simulação de Acoplamento Molecular , Tricotecenos/toxicidade
8.
Toxicol Lett ; 386: 1-8, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683806

RESUMO

Gelsedine-type alkaloids are highly toxic plant secondary metabolites produced by shrubs belonging to the Gelsemium genus. Gelsenicine is one of the most concerning gelsedine-type alkaloids with a lethal dose lower than 1 mg/Kg in mice. Several reported episodes of poisoning in livestock and fatality cases in humans due to the usage of Gelsemium plants extracts were reported. Also, gelsedine-type alkaloids were found in honey constituting a potential food safety issue. However, their toxicological understanding is scarce and the molecular mechanism underpinning their toxicity needs further investigations. In this context, an in silico approach based on reverse screening, docking and molecular dynamics successfully identified a possible gelsenicine biological target shedding light on its toxicodynamics. In line with the available crystallographic data, it emerged gelsenicine could target the acetylcholine binding protein possibly acting as a partial agonist against α7 nicotinic acetylcholine receptor (AChR). Overall, these results agreed with evidence previously reported and prioritized AChR for further dedicated analysis.

9.
Toxicology ; 488: 153471, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863505

RESUMO

Alkenylbenzenes are aromatic compounds found in several vegetable foods that can cause genotoxicity upon bioactivation by members of the cytochrome P450 (CYP) family, forming 1'-hydroxy metabolites. These intermediates act as proximate carcinogens and can be further converted into reactive 1'-sulfooxy metabolites, which are the ultimate carcinogens responsible for genotoxicity. Safrole, a member of this class, has been banned as a food or feed additive in many countries based on its genotoxicity and carcinogenicity. However, it can still enter the food and feed chain. There is limited information about the toxicity of other alkenylbenzenes that may be present in safrole-containing foods, such as myristicin, apiole, and dillapiole. In vitro studies showed safrole as mainly bioactivated by CYP2A6 to form its proximate carcinogen, while for myristicin this is mainly done by CYP1A1. However, it is not known whether CYP1A1 and CYP2A6 can activate apiole and dillapiole. The present study uses an in silico pipeline to investigate this knowledge gap and determine whether CYP1A1 and CYP2A6 may play a role in the bioactivation of these alkenylbenzenes. The study found that the bioactivation of apiole and dillapiole by CYP1A1 and CYP2A6 is limited, possibly indicating that these compounds may have limited toxicity, while describing a possible role of CYP1A1 in the bioactivation of safrole. The study expands the current understanding of safrole toxicity and bioactivation and helps understand the mechanisms of CYPs involved in the bioactivation of alkenylbenzenes. This information is essential for a more informed analysis of alkenylbenzenes toxicity and risk assessment.


Assuntos
Citocromo P-450 CYP1A1 , Safrol , Safrol/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação , Carcinógenos/toxicidade , Carcinógenos/metabolismo
10.
Toxins (Basel) ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36828409

RESUMO

Safrole, a 162.2 Da natural compound belonging to the alkenylbenzenes class, is classified as a possible carcinogen to humans by IARC (group IIB) and has proven to be genotoxic and carcinogenic to rodents. Despite its use as a food or feed additive, it is forbidden in many countries due to its documented toxicity; yet, it is still broadly present within food and feed and is particularly abundant in spices, herbs and essential oils. Specifically, safrole may exert its toxicity upon bioactivation to its proximate carcinogen 1'-hydroxy-safrole via specific members of the cytochrome P450 protein family with a certain inter/intra-species variability. To investigate this variability, an in-silico workflow based on molecular modelling, docking and molecular dynamics has been successfully applied. This work highlighted the mechanistic basis underpinning differences among humans, cats, chickens, goats, sheep, dogs, mice, pigs, rats and rabbits. The chosen metric to estimate the likeliness of formation of 1'-hydroxy-safrole by the species-specific cytochrome P450 under investigation allowed for the provision of a knowledge-based ground to rationally design and prioritise further experiments and deepen the current understanding of alkenylbenzenes bioactivation and CYPs mechanics. Both are crucial for a more informed framework of analysis for safrole toxicity.


Assuntos
Derivados de Alilbenzenos , Safrol , Ratos , Animais , Camundongos , Humanos , Cães , Coelhos , Ovinos , Suínos , Safrol/metabolismo , Galinhas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/metabolismo
11.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364940

RESUMO

Bioactive peptides may exert beneficial activities in living organisms such as the regulation of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining a growing interest for their health-promoting properties, and possible effects on glucose metabolism have been described, although the underlying mechanisms need clarification. This study proposes a computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall, this work presents an innovative and versatile approach to support the identification of bioactive peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory peptides within the proteomes under investigation (including ELS, which is among the most potent inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and A. flos-aquae, and on CSSL and PGG sequences.


Assuntos
Chlorella vulgaris , Cianobactérias , Proteoma , alfa-Amilases Pancreáticas , Peptídeos/farmacologia , Peptídeos/metabolismo , Cianobactérias/química , Cianobactérias/metabolismo , alfa-Amilases/metabolismo , Glucose
12.
Sci Rep ; 12(1): 15512, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109625

RESUMO

Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV infections are worldwide spread, especially in swine populations, representing an emerging threat for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV drugging strategies. In this context, an in silico molecular modelling approach that consisted in homology modelling to derive the 3D model target, docking study to simulate the binding event, and molecular dynamics to check complex stability over time was used. This workflow succeeded to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification of potential inhibitory compounds among natural plant-based flavagline-related molecules such as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, rocaglamide and a promising oxidized derivative have been suggested. For the sake of data reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.


Assuntos
Vírus da Hepatite E , Animais , Benzofuranos , DNA Helicases , Vírus da Hepatite E/genética , Humanos , RNA Helicases , Reprodutibilidade dos Testes , Suínos
13.
Toxins (Basel) ; 14(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35324704

RESUMO

Cytochrome P-450 (CYP) enzymes have a key role in the metabolism of xenobiotics of food origin, and their highly polymorphic nature concurs with the diverse inter-individual variability in the toxicokinetics (TK) and toxicodynamics (TD) of food chemicals. Ochratoxin A is a well-known mycotoxin which contaminates a large variety of food and is associated with food safety concerns. It is a minor substrate of CYP2D6, although the effects of CYP2D6 polymorphisms on its metabolism may be overlooked. Insights on this aspect would provide a useful mechanistic basis for a more science-based hazard assessment, particularly to integrate inter-individual differences in CYP2D6 metabolism. This work presents a molecular modelling approach for the analysis of mechanistic features with regard to the metabolic capacity of CYP2D6 variants to oxidise a number of substrates. The outcomes highlighted that a low-frequency CYP2D6 variant (CYP2D6*110) is likely to enhance ochratoxin A oxidation with possible consequences on TK and TD. It is therefore recommended to further analyse such TK and TD consequences. Generally speaking, we propose the identification of mechanistic features and parameters that could provide a semi-quantitative means to discriminate ligands based on the likelihood to undergo transformation by CYP2D6 variants. This would support the development of a fit-for-purpose pipeline which can be extended to a tool allowing for the bulk analysis of a large number of compounds. Such a tool would ultimately include inter-phenotypic differences of polymorphic xenobiotic-metabolising enzymes in the hazard assessment and risk characterisation of food chemicals.


Assuntos
Citocromo P-450 CYP2D6 , Ocratoxinas , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Mutação de Sentido Incorreto , Ocratoxinas/toxicidade , Polimorfismo Genético , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...